Single Cell RNA-Seq Quantification and Quality Check

Duration: 45 min

Lecture Material:

Outline:

  • What is scRNA-Seq Quantification?

  • scRNA-Seq Quantification pipeline for Full-length and Cell Barcoded library preparation technologies

  • Tools for the scRNA-Seq Quantification

    • Main differences and how do they affect the final count matrix

  • Quality Check metrics for scRNA-Seq count matrices

  • Basic filtering applied to scRNA-Seq count matrices

  • Further preprocessing of scRNA-Seq count matrices

    • Doublet Detection

    • Imputation

References

B. Kaminow, D. Yunusov, A. Dobin. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. bioRxiv 2021.05.05.442755; doi: https://doi.org/10.1101/2021.05.05.442755

Brüning RS, et. al. Comparative analysis of common alignment tools for single-cell RNA sequencing. Gigascience. 2022 Jan 27;11:giac001. doi: 10.1093/gigascience/giac001. PMID: 35084033; PMCID: PMC8848315.

Cheng Y, et. al. Evaluating imputation methods for single-cell RNA-seq data. BMC Bioinformatics. 2023 Jul 28;24(1):302. doi: 10.1186/s12859-023-05417-7. PMID: 37507764; PMCID: PMC10386301.

Dobin A, et. al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25. PMID: 23104886; PMCID: PMC3530905.

Du Y, et. al. Evaluation of STAR and Kallisto on Single Cell RNA-Seq Data Alignment. G3 (Bethesda). 2020 May 4;10(5):1775-1783. doi: 10.1534/g3.120.401160. PMID: 32220951; PMCID: PMC7202009.

Eding, M. (2019, April 25). Sparse Matrices. Retrieved September 22, 2023, from https://matteding.github.io/2019/04/25/sparse-matrices/

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923. PMID: 22388286; PMCID: PMC3322381.

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011 Aug 4;12:323. doi: 10.1186/1471-2105-12-323. PMID: 21816040; PMCID: PMC3163565.

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 Sep 15;34(18):3094-3100. doi: 10.1093/bioinformatics/bty191. PMID: 29750242; PMCID: PMC6137996.

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18. PMID: 19451168; PMCID: PMC2705234.

Melsted P, et. al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat Biotechnol. 2021 Jul;39(7):813-818. doi: 10.1038/s41587-021-00870-2. Epub 2021 Apr 1. PMID: 33795888.

Parekh S, et.al. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience. 2018 Jun 1;7(6):giy059. doi: 10.1093/gigascience/giy059. PMID: 29846586; PMCID: PMC6007394.

Patro R, et. al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017 Apr;14(4):417-419. doi: 10.1038/nmeth.4197. Epub 2017 Mar 6. PMID: 28263959; PMCID: PMC5600148.

Reppell M, Novembre J. Using pseudoalignment and base quality to accurately quantify microbial community composition. PLoS Comput Biol. 2018 Apr 16;14(4):e1006096. doi: 10.1371/journal.pcbi.1006096. PMID: 29659582; PMCID: PMC5945057.

Srivastava A, et.al. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 2019 Mar 27;20(1):65. doi: 10.1186/s13059-019-1670-y. PMID: 30917859; PMCID: PMC6437997.

Teichmann Group. Single Cell Genomics Library Structure. Retrieved September 21, 2023, from https://teichlab.github.io/scg_lib_structs/.

Xi NM, Li JJ. Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data. Cell Syst. 2021 Feb 17;12(2):176-194.e6. doi: 10.1016/j.cels.2020.11.008. Epub 2020 Dec 17. PMID: 33338399; PMCID: PMC7897250.

You Y, et.al. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows. Genome Biol. 2021 Dec 14;22(1):339. doi: 10.1186/s13059-021-02552-3. PMID: 34906205; PMCID: PMC8672463.